Роторный двигатель принцип работы

Роторный двигатель — родовое наименование конструкции теплового двигателя, за которым стоит целое семейство близких по конструкции двигателей, объединенное ведущим признаком — типом движения главного рабочего элемента.

Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор, совершает вращательное движение. Двигатели должны давать на выходе вращательное движение главного вала. И именно этим роторные ДВС выгодно отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент — поршень, совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. А вот в поршневых моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Именно в свойствах этих механизмов кроются многие недостатки современных поршневых ДВС.

Классификация роторных ДВС

Главное деление роторных двигателей происходит по типу работы камеры сгорания — запирается она на время герметично, или имеет постоянную связь с атмосферой. К последнему типу относятся газовые турбины, камеры охлаждения которых отделены от выхлопного сопла (от атмосферы) лишь густым «частоколом» лопастей роторной крыльчатки.

В свою очередь, роторные ДВС с герметично запираемыми камерами сгорания делятся на 7 различных конструкционных компоновок:
роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главного рабочего элемента;
роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента;
роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками-лопастями, движущимися в роторе. Частный случай — с заслонками-лопастями, отклоняющимися на шарнирах на роторе;
роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками, движущимися в корпусе;
роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов;
роторные двигатели с простым вращательным движением главного рабочего элемента, без применения отдельных уплотнительных элементов и спиральной организацией формы рабочих камер;
роторные двигатели с планетарным вращательным движением главного рабочего элемента и без применения отдельных уплотнительных элементов.

Роторные двигатели Фройде и Ванкеля, которые не вполне корректно с технической точки зрения называют «роторно-поршневыми», относятся к 7-й классификационной группе.

Врождённые недостатки

У перспективнейшей схемы есть серьёзные недостатки, справиться с которыми обойдётся дорого и трудно.

Камера сгорания у роторного двигателя вытянутой формы, словно серпик молодой луны. Естественно, тепловые потери на большей, чем в обычном цилиндре, площади приводят к высокой теплонагруженности двигателя и меньшему КПД. В такой камере сгорания и эффективного перемешивания рабочей смеси не происходит, а тогда – плохая экономичность и экологичность.

С точки зрения технолога, роторный двигатель далеко не подарок. В отличие от обычных поршневых двигателей, у которых процесс сгорания топлива происходит попеременно в разных цилиндрах, а в промежутках камера сгорания охлаждается на такте впуска рабочей смесью, роторный двигатель имеет только одну камеру сгорания, работающую постоянно. Поэтому ротор должен быть стойким к температурным изменениям, когда нагревшуюся поверхность начинает охлаждать рабочая смесь через такт.

Еще одна проблема – уплотнения. В поршневом ДВС кольца работают под одним и тем же рабочим углом. В роторном двигателе, когда ротор скользит углами по поверхности статора, уплотнениям приходится работать под разными углами. Естественно, трение приходится уменьшать, впрыскивая масло прямо в коллектор. Экологичность ещё больше страдает…

Ну и для заметки: роторный двигатель просто не может работать на солярке. Он не вынесет таких нагрузок, какие свойственны дизелю.

Дальнейшие перспективы роторных двигателей

Сейчас серийно выпускается только Mazda RX-8. У неё потрясающие управляемость и динамика: максимальная скорость 235 км/ч и разгон до сотни за 6,4 секунды. Двигатель нового поколения Renesis выдаёт 250 л.с. при 9000 об/мин без турбонаддува с двух секций общим объёмом 1598 см3, и расходует на удивление мало бензина.

Но для новой RX-8 свойственны некоторые отличия от легендарных машин прошлого. Экологические требования привели к отказу от применения турбонаддува, который придавал прежним моторам невероятную мощь. Кроме того, японские тюнингеры разгоняли их до 1000 л.с., повышая давление наддува, а с новым мотором этого не выйдет. Он форсирован по-другому, методом повышения максимальных оборотов. Видимо, это плата за существование двигателя Ванкеля в новом, странном и непонятном, но экологичном мире.
История не закончена…

В настоящее время разработку роторных двигателей официально ведёт только Mazda, накопившая в этой области гигантский опыт. Именно ей принадлежит идея заставить роторный двигатель работать на водородном топливе, таким образом, исключая выбросы вообще. Правда, роторный двигатель Renesis на водороде работает с неохотой, выдавая всего 109 лошадей. Но для упорных японцев это не проблема. Пока RX-8 Hydrogene возит на борту два бака – один для бензина, другой для водорода. На трассе Мазда ездит на бензине, а в городе на водороде – переключение между видами топлива происходит с водительского места простым нажатием кнопки.

Так что история роторного двигателя на этом не заканчивается. Возможно, в будущем к двигателю, работающему на чистом водороде, японцы приспособят турбонаддув...
Вместо поскриптума

Недавно на крупном автосайте обнаружено сообщение о разработке АвтоВАЗом нового роторного двигателя. Может быть, именно это придаст брэнду «ВАЗ» узнаваемость, а его моделям динамичность?

220px-Demo-Wankel_Cycle_anim_de

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.